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ABSTRACT   
 
Pre-built space-time non-adaptive processing (PSTAP) has been proposed in a previous DSTO 
report. This report further examines the performance of PSTAP using simulated airborne 
radar data generated by the Rome Laboratory Space-Time Adaptive Proccessing (RLSTAP) 
software. Results from the conventional STAP diagonally loaded sample matrix inversion 
(DL-SMI) method are used as benchmarks to evaluate results of PSTAP. It is found that 
PSTAP performs the same as STAP. Most importantly, PSTAP does not need computing 
computationally intensive optimum weights in real-time.  
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Executive Summary    
 
In scenarios where an airborne phased array Doppler radar is used in searching for 
moving targets whose signals are embedded in Gaussian distributed undesired signals 
including clutter (echoes from the terrain surface), noise jamming and thermal noise, 
space-time adaptive processing (STAP) provides the optimum signal-to-interference-
and-noise ratio (SINR). However STAP normally requires the inverse of the covariance 
matrix (ICM) of undesired signals in order to form the optimum weights to process the 
received data. The typical dimension of the covariance matrix (CM) of undesired 
signals ranges from hundreds to thousands. It is this large computational load that 
prevents the implementation of fully adaptive STAP algorithms in real airborne radar 
systems at current computer speeds. 
 
We have proven that the ICM is approximately invariant to changes in clutter returns. 
Based on this observation we have proposed pre-built space-time non-adaptive 
processing (PSTAP) in a previous DSTO Research Report. The approximate invariance 
of the ICM means that the ICM depends on radar and platform parameters, but is 
approximately independent of clutter environments. The optimum weights can 
therefore be pre-built with each set of the weights corresponding to a specific set of 
system parameters. During the mission, since the system parameters are measurable 
and controllable, the set of the optimum weights for the data to be processed can be 
simply called from a look-up table style library. 
 
In this report we have further evaluated the performance of PSTAP using airborne 
radar data generated by the high fidelity airborne radar system simulation software, 
RLSTAP (Rome Laboratory Space-Time Adaptive Processing). We have also computed 
STAP results using the conventional diagonally loaded sample matrix inversion (DL-
SMI) method. The STAP results serve as benchmarks to examine the results of PSTAP. 
 
There are two ways of constructing the PSTAP optimum weights. One way is to use 
clutter models, which does not require either any specific knowledge of the clutter 
environment or any sample data. The second relies on test or previous flight data. A 
standard STAP procedure may be used to form the optimum weights using the test or 
previous flight data. Clutter environments of the test data and future data need not be 
the same or similar, but the radar and platform parameters are supposed to be the 
same in principle. 
 



 

 

A total of nine datasets have been generated using the RLSTAP software. Clutter 
environments used in the simulation include the Seattle area and the Washington D.C. 
area. PSTAP results using weights constructed in both ways are compared to results of 
STAP. The comparison has shown that:  
 

• PSTAP performs the same as or slightly better than STAP for all cases studied if 
optimum weights are constructed based on the clutter models. 

• PSTAP performs the same as STAP for all cases studied if optimum weights are 
constructed using other data sets. 

 
Most importantly, PSTAP builds a library of optimum weights a priori and therefore 
does not need computing computationally intensive optimum weights in real-time.  
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1. Introduction 

In scenarios where an airborne phased array Doppler radar is used in searching for 
moving targets whose signals are embedded in Gaussian distributed undesired signals 
including clutter (echoes from the terrain surface), noise jamming and thermal noise, 
space-time adaptive processing (STAP) provides the optimum signal-to-interference-and-
noise ratio (SINR) (Ward, 1994, Klemm, 2002). However STAP normally requires the 
inverse of the covariance matrix (ICM) of undesired signals in order to form optimum 
weights to process received data. The typical dimension of the covariance matrix (CM) of 
undesired signals ranges from hundreds to thousands. It is this large computational load 
that prevents the implementation of fully adaptive STAP algorithms in most airborne 
radar systems at current computer speeds. 
 
It has been proven that the ICM is approximately invariant to changes in clutter returns. 
Based on this we have proposed a pre-built space-time non-adaptive processor (PSTAP) in 
a previous DSTO Research Report (Dong, 2005). The approximate invariance of the ICM 
means that the ICM depends on radar system (radar and platform) parameters, but is 
approximately independent of the clutter environment. Optimum weights can therefore be 
pre-built, with each set of weights corresponding to a specific set of system parameters. 
During the mission, since system parameters are measurable and controllable, the set of 
optimum weights for the data to be processed can be simply called from a look-up table 
style library. 
 
This report further evaluates the performance of PSTAP using airborne radar data 
generated by the high fidelity airborne radar system simulation software, Rome 
Laboratory Space-Time Adaptive Processing (RLSTAP). There are two ways of 
constructing PSTAP optimum weights. One is to use clutter models, which does not 
require either any specific knowledge of the clutter environment or any sample data. The 
second relies on test or previous flight data. A standard STAP procedure may be used to 
form the optimum weights using the test or previous flight data. Clutter environments of 
the test data and future data need not to be the same or similar, but the radar and platform 
parameters are supposed to be the same in principle. 
 
The advantage of using clutter models to build optimum weights is that all possible 
combinations of radar and platform parameters can be presented in computation and the 
resultant optimum weights stored for later use. The problem is the fidelity of the models 
has to be verified for the specific system using the test flight data. Some effects may be 
difficult to model precisely. On the other hand, since the ICM is approximately invariant 
to the clutter environment, the optimum weights can also be constructed a priori simply 
using STAP procedures with test flight data. The advantage of this method is that there is 
no direct mathematical modelling involved in the construction of the weights. However, 
because the test flight data are limited, it is unlikely that the test data could cover all 
possible combinations of radar and platform parameters which may occur in the future 
missions. To reduce the number of possible combinations of radar and platform 
parameters, the pulse repetition frequency (PRF) can be linked to the platform velocity and 
to make the ratio of the two constant. This will be demonstrated in Section 4. 
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Results of PSTAP using both ways of constructing optimum weights are compared to 
results of STAP. The ICM for STAP is obtained using the conventional diagonally loaded 
sample matrix inversion (DL-SMI) method. On the other hand, PSTAP only requires radar 
and system parameters but does not require any sample data and any knowledge of the 
particular clutter environment to form the optimum weights if the construction is based on 
the clutter models. If the construction of the weights is based on the flight data, the 
difference between STAP and PSTAP is that the weights are obtained from and applied to 
the same dataset in former while the weights are obtained from one dataset and used to 
process another in latter. 
 
 

2. Generating Datasets 

A total of nine airborne radar datasets were generated by RLSTAP to support the 
assessment of PSTAP in this report. The first six datasets were mainly used to evaluate the 
performance of PSTAP in which the optimum weights were generated purely from 
modelling perspective. The last three datasets mainly served to evaluate the performance 
of PSTAP in which the optimum weights were generated from other datasets.  
 
Datasets, #1, #2 and #3 were generated using the system and environmental parameters 
given in Table 1. All three datasets have the same radar and platform parameters as well 
as the same clutter environment. The only difference among them is the radar cross-
section (RCS) of the targets. In particular, datasets #1, #2 and #3, respectively, contains 
three 10 m2 targets, three 1 m2 targets and three 0.1 m2 targets.  Table 2 lists parameters of 
these targets. 
 
Datasets #4, #5 and #6 are similar to the first three datasets, except that 
 

• The Washington D.C area was used as the clutter environment rather than the 
Seattle area; 

•  Platform height was 7 km rather than 10 km; 
• Mainbeam was steered 30o from the broadside (east) rather than 0o.   

 
Table 3 lists target parameters for datasets #4, #5 and #6. 
 
Dataset #7 has the same parameters and clutter environment as dataset #5 except that the 
mainbeam was steered to the broadside. 
 
Datasets #8 has all the same parameters and clutter environment as dataset #2 except that 
the platform speed was changed to 168.3 m/s.  
 
Dataset #9 has all the same parameters and clutter environment as dataset #8 except that 
the PRF was changed to 1923 Hz. We will see the reasons for these changes in #8 and #9 
later in the report. 
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For easy reference later in the report, the conditions under which these datasets were 
generated are summarised in Table 4.  
 

Table 1: Parameters used in RLSTAP for generating first three airborne radar datasets. 

Parameter Specification 
Radar 

Phased array Linear 20-by-4 elements, element pattern 
( )φ6.0cos , azimuth spacing 0.12m, elevation 

spacing 0.15m uniform tapering for transmit 
Carrier frequency 1.2 GHz 
Polarisation VV 
LFM bandwidth 2 MHz 
PRF 2 kHz 
Number of pulses per CPI 32 
Peak power 30 kW 
Duty 10% 
Sample rate 0.2 μs 
Looking direction Broadside (East), horizontal 

Platform 
Height 10 km 
Speed 175 m/s 

Undesired signals 
Thermal noise Gaussian 
Clutter Seattle area: (47.9oN, -123.9oE) to (47.0oN, -

122.1oE) 
Jamming None 

 

Table 2: Target parameters for the first three datasets. 

Parameters Target 1 Target 2 Target 3 
Height (km) 5 5 5 
Position off broadside direction 1 km North 0.5 km South 0 
Radial velocity (m/s) -75 -55 -65 
Doppler frequency (Hz) 600 440 520 
Range (km)  50 60 70 
Range bin Number 1934 2266 2598 
RCS (sqm) 10 / 1 / 0.1 10 /1 / 0.1 10 / 1 / 0.1 
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Table 3: Target parameters for the second three datasets. 

Parameters Target 1 Target 2 Target 3 
Height (km) 3 3 3 
Position off mainlobe direction 1 km north 0.5 km south 0 
Radial velocity (m/s) -100 -20 150 
Doppler frequency (Hz) -500 860 -500 
Range (km)  50 60 70 
Range bin Number 1948 2256 2598 
RCS (sqm) 10 / 1 / 0.1 10 / 1 / 0.1 10 / 1 / 0.1 

 

Table 4: Datasets generated and used in the report. 

Dataset System Parameters Clutter 
Environment 

Target 
Parameters 

Target 
RCS 

(sqm) 
#1 Table 1 Seattle area Table 2 10 
#2 Ditto Ditto Ditto 1 
#3 Ditto Ditto Ditto 0.1 
#4 Table 1 except that the platform 

height is amended to 7 km and look 
angle to 30o from broadside. 

Washington 
D.C. area 

Table 3 10 

#5 Ditto Ditto Ditto 1 
#6 Ditto Ditto Ditto 0.1 
#7 As #5 except that the look angle is to 

the broadside 
Ditto Ditto 1 

#8 As #2 except the platform speed is 
changed to 168.3 m/s 

Seattle area  

Table 21 

1 

#9 As of #2 except the platform speed is 
changed to 168.3 m/s and the PRF to 
1923 Hz 

Ditto  

Table 22 

1 

 
RLSTAP calculates clutter returns based on the United States Geological Survey Land Use 
and Land Cover (USGS LULC) data and the Digital Terrain Elevation (DTE) data. The 
LULC data superposed onto the DTE data for the Seattle area and the Washington area, 
respectively, with the radar beam pattern, are shown in Figure 1 and Figure 2. Details of 
the clutter calculation model used in RLSTAP are unknown. 
 
The unambiguous range is 75 km for the parameters given in Table 1. With the classical 
4/3 Earth radius model, the range to the horizon is 412.5 km resulting in an up to five 
range foldovers. However due to the availability of the LCLU data, the simulation only 
took the first range foldover into the account. That is, clutter returns from beyond 150km 

                                                      
1The Doppler frequencies of the targets change accordingly with the change in platform speed. 
2See note 1.  
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were ignored. Because the clutter return decays as a function of the range to the third 
power, the effect of higher range foldovers is believed to be insignificant. 
 
Before presenting results, it is worth discussing some issues that occurred in the 
processing. 
 

 
 

Figure 1: The LULC data superposed onto the DTE data of the Seattle area. 

 
 

Figure 2: The LULC data superposed on the DTE data of the Washington D. C. area. 
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3. Some Issues 

3.1 Clutter Foldover 

For medium and high PRF radars, due to range ambiguity (clutter foldover), clutter 
returns received by the first few pulses are generally statistically different from the rest of 
the pulses in a CPI, unless the CPIs are continuous. This is because the data received by 
the first pulse contain no clutter foldover component, the data received by the second 
pulse contain the first clutter foldover component generated by the first pulse and so on. 
Some radars automatically discard the data collected by the first few pulses to make the 
received data statistically the same. The simulated RLSTAP data apparently “collected” all 
data generated by all pulses. Figure 3 shows three clutter profiles against range collected 
by receive element 1 for the first, second and third pulses, respectively. It can be seen that 
the data collected by pulse 1 and the data collected by pulse 2 or pulse 3 are statistically 
different, while the data collected by pulse 2 and pulse 3 are statistically the same. This is 
consistent with the given simulation conditions where the clutter return from the first 
clutter foldover was included (the rest of clutter foldovers were ignored due to the lack of 
the LULC data and DTE data for the extended area). 
 
Therefore in our calculation only the data collected by the 2nd to 32nd pulses were used. 
Theoretically, the exclusion of the first pulse data results in a small coherent processing 
gain loss of dB14.0)32/31(log10 10 −= . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Three clutter profiles against range received by antenna element 1 for pulse 1, 2, and 3, 
respectively. 

 
 
3.2 Decorrelation 

In the analysis of real airborne radar data, Multi-Channel Airborne Radar Measurement 
(MCARM) data, it has been found that the most dominant decorrelation contributions 
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include range ambiguity and clutter intrinsic motion (Dong, 2005). The analysis of 
RLSTAP data however shows that only the contribution of range ambiguity is significant. 
The clutter notch of RLSTAP data is much narrower than that of MCARM data, although 
two radar systems have similar parameters. Figure 4 compares clutter notches of RLSTAP 
and MCARM data. The SINRs shown in the figure were computed using the STAP  
DL-SMI method. The shift of the notch of MCARM data is due to the crab angle of the 
aircraft. No crab angle was assumed in RLSTAP data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) RLSTAP data 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (b) MCARM data 

Figure 4: Clutter notch comparison between (a) RLSTAP data and (b) MCARM data. The SINR 
curves are computed using the STAP DL-SMI method. 

 
 
Spatial and temporal decorrelation due to clutter foldover, clutter intrinsic motion and 
platform motion usually broadens the SINR notch. Details of simulation models counting 
various decorrelation effects in RLSTAP are unknown. One possible explanation for the 
narrower notch of RLSTAP data may be the decorrelation models used in RLSTAP. 
Because the main purpose of this report is to evaluate the performance of PSTAP rather 

-20

-10

0

10

20

30

-1000 -750 -500 -250 0 250 500 750 1000

Doppler frequency (Hz)

SI
N

R
 (d

B)

-20

-10

0

10

20

30

-1000 -750 -500 -250 0 250 500 750 1000

Doppler freq (Hz)

SI
N

R
 (d

B)



 
DSTO-RR-0295 

 
8 

than examining the fidelity of the simulation model, we will not further investigate this 
notch width difference. To best match the clutter notch, only the decorrelation effect due to 
range ambiguity is included in the PSTAP modelling for RLSTAP data. The decorrelation 
effect due to clutter intrinsic motion was not included, (ie, the clutter Doppler bandwidth 
was assumed to be 0 Hz). The comparison of the PSTAP SINR and the STAP SINR is 
shown in Figure 5. The level of the STAP SINR has been properly adjusted assuming that 
its maximum value approaches the theoretical maximum value. It can be seen, with the 
only range ambiguity effect taken into account, the notch width of the PSTAP SINR is 
almost identical to that of the STAP SINR. The loss of the PSTAP SINR, ie, the difference of 
the STAP SINR and the PSTAP SINR is shown in Figure 6. It can be seen that significant 
loss only occurs at the centre frequency of clutter, indicating that PSTAP should perform 
the same as STAP for detecting target signals whose Doppler frequencies differ from that 
of clutter. Furthermore the PSTAP can suppress clutter signal more than required because 
the notch of the PSTAP is deeper than that of the STAP.  
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Figure 5: Comparison of the STAP SINR and the PSTAP SINR. 

-20

-15

-10

-5

0

5

-1000 -750 -500 -250 0 250 500 750 1000

Doppler frequency (Hz)

S
IN

R
 lo

ss
 (d

B)

 

Figure 6: Loss of the PSTAP SINR compared to the STAP SINR. A significant loss only occurs at 
the centre frequency of clutter indicating that the PSTAP has a greater capability to suppress 
clutter than the STAP, while the target detection capabilities for both processors are about the same 
as the SINR loss elsewhere is close to zero dB. 
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3.3 Sample Selection for STAP Covariance Matrix 

To compute the CM using the STAP DL-SMI method, one might think the more range 
samples the better. In fact this is not necessarily true because samples are generally not 
collected from a statistically homogenous clutter environment. Shown in Figure 7 is a 
comparison of sidelobe levels of target 1 in Dataset #2 (1m2 RCS, at range bin 1934) 
detected by the STAP DL-SMI method with different selections of range samples for the 
CM. In particular the sample range bins for the four cases shown in the figure are: 
 

• Case 1: range bins 800-2650 with the exclusion of target range bins themselves (the 
target range bins for targets 1, 2 and 3 are 1934, 2266 and 2598, respectively) as well 
as 10 nearest range bins on both sides of each target range bin; 

• Case 2: range bins 1634-2234 with the exclusion of 1924-1944 (the target range bin is 
1934) 

• Case 3: range bins 800-1600 (no target in this region); 
• Case 4: range bins 1000-1600 (no target in this region). 

 
It can be seen from the figure that case 1 has the worst sidelobe level, although the greatest 
number of range samples were used. Sidelobe levels of the other three cases are about the 
same. In this report, case 4 was used to compute the CM in the DL-SMI method to obtain 
STAP results. 
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Figure 7: Sidelobe level comparison using the covariance matrices computed from different sample 
regions. Case 1 has the worst sidelobe level.  

 
 
3.4 Optimum Weights for PSTAP and STAP 

Construction of PSTAP optimum weights requires knowledge of the radar’s elevation 
angle relative to the terrain surface for a given range. Since the elevation angle of the 
terrain differs from range bin to range bin, theoretically each range bin should require a set 
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of optimum weights. However, it has been shown in the previous report that the ICM is 
robust and not very sensitive to variations in elevation angle (Dong, 2005). For range bins 
1700-2650 (wide enough to cover all targets), the corresponding elevation angle varies 
from 13.46o to 8.04o. It is believed that for such a variation in elevation angle, the 
differences among the ICMs should be insignificant. Therefore, only one single set of 
weights corresponding to range bin 2715 (the central range bin of 1700-2650) was 
constructed for PSTAP. This single set of the optimum weights was used in PSTAP to 
process all range bins 1700-2650. That the ICM not sensitive to the variations in elevation 
angle has also been observed in the STAP DL-SMI method as shown in Figure 7 where the 
results of cases 2 to 4 are about the same although the number of samples as well as the 
sections of samples selected are different. Similarly, therefore, only a single CM computed 
from range bins 1000-1600 was used to process data in range bins 1700-2650 in STAP. 
 
 

4. Results 

As indicated that there are two ways of constructing optimum weights for PSTAP: (1) by 
modelling and (2) based on other flight data. Results of these two ways are presented in 
Subsections 4.1 and 4.2, respectively. Meanwhile results of STAP are also presented as 
benchmarks to evaluate the performance of PSTAP. 
 
4.1 Constructing Optimum Weights using Clutter Models 

In this subsection PSTAP optimum weights were constructed from the clutter models 
(Dong, 2005), which requires neither any knowledge of specific clutter environments nor 
any sample data. 
 
4.1.1 Results of Datasets #1, #2 and #3 

Results of target detection applying STAP and PSTAP to Datasets #1, #2 and #3 are shown 
in Figure 8 to Figure 10, where range bins 1700-2650 have been processed to include all 
three targets. Each figure shows four results, two comparing STAP and PSTAP without 
use of any window function, and the other two with use of the hamming window function 
(the window function was used in both the temporal and spatial domains). As anticipated, 
with the use of the hamming window function, sidelobe levels become lower and noise 
spikes are smoothed, but the resolution also becomes poorer. Two-dimensional plots for 
the range bins containing targets without use of any window function are shown in Figure 
11 to Figure 13. Overall both STAP and PSTAP perform approximately the same, with the 
latter exhibiting slightly lower sidelobes. It has also been observed that for the scenario of 
0.1 m2 targets, the first two targets are only marginally detectable if not totally non-
detectable, while the third seems to become totally non-detectable, as it is further away 
from the radar.  
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(a) STAP with uniform window (b) STAP with Hamming window 

  
(c) PSTAP with uniform window (d) PSTAP with Hamming window 

 

Figure 8: Comparison of STAP and PSTAP for detecting targets of 10m2 RCS in Dataset #1. 
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(a) STAP with uniform window (b) STAP with Hamming window 

  
(c) PSTAP with uniform window (d) PSTAP with Hamming window 

 

Figure 9: Comparison of STAP and PSTAP for detecting targets of 1m2 RCS in Dataset #2.  
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(a) STAP with uniform window (b) STAP with Hamming window 

  
(c) PSTAP with uniform window (d) PSTAP with Hamming window 

 

Figure 10: Comparison of STAP and PSTAP for detecting targets of 0.1m2 RCS in Dataset #3. 
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 (a) 10 m2 target in Dataset #1 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (b) 1 m2 target in Dataset #2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 0.1 m2 target in Dataset #3 
 

Figure 11: Sidelobe comparison between STAP and PSTAP for target 1 in Datasets #1, #2, and #3. 
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(a) 10 m2 target in Dataset #1 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 1 m2 target in Dataset #2 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (c) 0.1 m2 target in Dataset #3 
 

Figure 12: Sidelobe comparison between STAP and PSTAP for target 2 in Datasets #1, #2 and #3. 
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 (a) 10 m2 target in Dataset #1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (b) 1 m2 target in Dataset #2 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (c) 0.1 m2 target in Dataset #3 

Figure 13: Sidelobe comparison between STAP and PSTAP for target 3 in Datasets #1, #2 and #3. 
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4.1.2 Results of Datasets #4, #5 and #6 

Results of target detection applying STAP and PSTAP to Datasets #4, #5 and #6 are shown 
in Figure 14 to Figure 16. Because the beam was steered 30o from the broadside, the clutter 
notch is shifted from 0 Hz and close to the frequency of the target 2. The results and 
conclusions are similar to those presented in Subsection 4.1.1. That is, both STAP and 
PSTAP perform approximately the same, with the latter having slightly lower sidelobes.  
 
 

  
(a) STAP with uniform window (b) STAP with Hamming window 

  
(c) PSTAP with uniform window (d) PSTAP with Hamming window 

 

Figure 14: Comparison between STAP and PSTAP for detecting10m2 targets in Dataset #4. 
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(a) STAP with uniform window (b) STAP with Hamming window 

  
(c) PSTAP with uniform window (d) PSTAP with Hamming window 

 

Figure 15: Comparison between STAP and PSTAP for detecting1m2 targets in Dataset #5. 
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(a) STAP with uniform window (b) STAP with Hamming window 

  
(c) PSTAP with uniform window (d) PSTAP with Hamming window 

 

Figure 16: Comparison between STAP and PSTAP for detecting 0.1 m2 targets in Dataset #6. 

 
 
4.2 Constructing Optimum Weights using Other Flight Data 

Instead of using modelling procedure, PSTAP optimum weights can also be formed using 
data collected by other flight data. Because the ICM is approximately invariant to clutter 
returns, the ICM or weights of PSTAP can be computed from other datasets using a STAP 
method such as the conventional DL-SMI method. This pre-computed ICM or weights can 
then be directly applied to datasets collected in the future, provided that the radar and 
platform parameters, including the configuration of the phased array, frequency, 
polarisation, waveform, PRF, coherent processing interval (CPI), and platform speed etc, 
for these datasets are the same. In this way, there is no need to compute the ICM or 
weights in real-time.  
 
For convenience we bracket a pair of datasets together to indicate that the first dataset in 
the brackets is used to form the optimum weights which are then applied to the second 
dataset for target detection. For instance (#x, #y) means that the weights are generated 
from Dataset #x and applied to Dataset #y for target detection.  
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Datasets #2 and #7 were first used for the study. According to Table 4, all parameters for 
these two datasets are the same except: 
 

• Dataset #2 used the Seattle area as the clutter environment with a platform height 
of 10km; 

• Dataset #7 used the Washington D.C. area as the clutter environment with a 
platform height of 7km. 

 
The results are shown in Figure 17 and Figure 18. Each figure shows the result of STAP (#x 
and #y are the same) as well as the result of PSTAP (#x and #y are different). Interestingly, 
Figure 17 shows that PSTAP performs slightly better (lower sidelobes), while the opposite 
is found in Figure 18. 
 

  
(a) STAP (#2, #2) (b) PSTAP (#7, #2) 

 

Figure 17: Comparison between STAP and PSTAP for detecting 1 m2 targets in Date set #2. 
PSTAP uses the ICM computed from Dataset #7. 

 

  
(a) STAP (#7, #7) (b) PSTAP (#2, #7) 

 

Figure 18: Comparison between STAP and PSTAP for detecting 1 m2 targets in Dataset #7. 
PSTAP uses the ICM computed from Dataset #2. 
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We have indicated and demonstrated that the radar and platform parameters (except the 
height of the platform) should be the same if PSTAP weights are obtained from other flight 
data. Let us now examine the effects of changing platform speed on PSTAP weights. All 
the parameters including the clutter environment are the same for Datasets #2 and #8 
except the platform speed which is 175 m/s for the former and 168.3 m/s for the latter. 
The results of STAP and PSTAP are shown in Figure 19 (a) and (b), respectively. It can be 
seen that the PSTAP result degrades significantly compared to the STAP result, due to the 
platform speed difference (about 4%) between the two datasets. 
 
A similar result is shown in Figure 19 (c) where the weights were generated from Dataset 
#7 and applied to Dataset #8. The differences between Datasets #7 and #8 include the 
platform speed and the clutter environment.  
 
Figure 19 (d) shows another PSTAP result, in which the weights were generated from 
Dataset #9 and applied to Dataset #8. All parameters including platform speed and the 
clutter environment are the same for Datasets #8 and #9 except the PRF which is 2000 Hz 
for the former and 1923 Hz for the latter. 
 

  
(a) STAP (#8, #8) (b) PSTAP (#2, #8) 

  
(c) PSTAP (#7, #8) (d) PSTAP (#9, #8) 

Figure 19: PSTAP does not work, if the system parameters in the dataset used to construct the 
weights are different from parameters in the dataset being processed.  
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It is observed from the examples shown in Figure 19 (b), (c) and (d) that PSTAP cannot 
perform at the same level as STAP if the platform speed or PRF is different between the 
dataset used to generate the weights and the dataset being processed, though the other 
radar and platform parameters may remain the same.  In the space-time steering vector, 
the platform speed av  and the PRF rf are linked to the ratio of the normalised Doppler 
frequency to the normalised spatial frequency, β  through (Ward, 1994), 
 

df
v

r

a2=β  (1) 

where d  is the antenna element interval. 
  
It has been predicted in the previous report (Dong, 2005) that if β  is constant and the 
other radar and platform parameters remain the same, PSTAP should be unaffected by 
changes in av  and rf . To examine this prediction, two PSTAP results are compared to the 
STAP results for Dataset #9 as shown in Figure 20. For the PSTAP results shown in Figure 
20 (b) and (c), the weights were generated from Datasets #2 and #7, respectively. Datasets 
#2 and #9 were generated with the same clutter environment of the Seattle area, and the 
ratio of ra fv /  is 0875.02000/175 =  for #2 and 0875.01923/3.168 =  for #9. Dataset #7 has the 
same values of av  and rf  as #2, but with a different clutter environment (Washington D.C 
area). Another difference between #7 and #9 is the platform height which is 7 km for the 
former and 10 km for the latter. It can be seen as long as the ratio of ra fv /  is the same for 
the dataset used to generate the weights and the dataset being processed, PSTAP is still 
able to perform the same as STAP.  
 
From the above comparisons, we observe that: 
 

• The approximate invariance of the ICM allows optimum weights to be pre-built 
based on other flight data using a STAP method such as the DL-SMI method.  

• The pre-built optimum weights can generally only be used to process data 
collected with the same radar and platform parameters. However, as the ICM is not 
very sensitive to grazing angle, the platform height in the dataset used to form 
optimum weights and in the datasets to be processed can be different. Two 
datasets with platform heights 7 km and 10 km, respectively, have been mutually 
used to form the optimum weights and process the other dataset and no 
performance deterioration has been found. 

• The pre-built optimum weights can be used to process data collected with different 
platform speeds as long as the ratio of the platform speed to the PRF maintains 
constant.  

• In general PSTAP performs the same as STAP for most cases studied. However for 
a particular case, it may perform better or worse. Figure 17 shows that PSTAP has 
lower sidelobes than STAP, while Figure 18 illustrates the opposite. The reason is 
still under investigation. 
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(a) STAP (#9, #9) 

  
(b) PSTAP (#2, #9) (c) PSTAP (#7, #9) 

 

Figure 20: PSTAP still works, if the dataset used to construct the weights and the dataset to be 
processed have the same ratio of ra fv / .  

 
 

5. Summary 

To process airborne phased array Doppler radar data, STAP (space-time adaptive 
processing) provides the optimum SINR (signal-to-interference-and-noise ratio) in 
detecting target signals embedded in undesired signals including clutter, jamming and 
thermal noise. The bottleneck that prevents the fully adaptive STAP from implementation 
in real-time radar systems is the time requirement for computing the ICM (the inverse of 
the covariance matrix) to construct optimum weights.  
 
For a side-looking scenario, we have proven that the ICM is approximately invariant to 
changes in the clutter returns (Dong, 2005). Based upon this, we have proposed PSTAP 
(pre-built space-time non-adaptive processing). Optimum weights can be pre-built 
without knowing the clutter environment to significantly reduce real-time computational 
demand. We have successfully applied PSTAP to MCARM (Multi-Channel Airborne 
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Radar Measurement) data and shown that PSTAP performs the virtually same as STAP in 
a previous report (Dong 2005).  
 
This report has further applied PSTAP to data generated by the high fidelity airborne 
radar simulation software, RLSTAP (Rome Laboratory Space-Time Adaptive Processing). 
Results calculated from the STAP DL-SMI (diagonally loaded sample matrix inversion) 
method have been used as benchmarks to evaluate the performance of PSTAP.  
 
Using PSTAP, the pre-built optimum weights can be constructed through two ways. One 
is based on clutter models and the other relies on the test flight data. The advantage of the 
former is that any combinations of the system parameters can be selected in calculation so 
a library of optimum weights can be easily constructed. The advantage of the latter is that 
optimum weights can be computed from the test or previous flight data applying the 
usual STAP procedures. In this way, some difficult modelling issues can be avoided. The 
problem of the latter, however, is that it seems impossible to have test flight data cover all 
combinations of system parameters which are likely encountered in the future missions. If 
the PRF (pulse repetition frequency) is linked to the platform speed, then the number of 
possible combinations of the radar and system parameters can be greatly reduced.  
 
A total of nine datasets have been generated using RLSTAP. Clutter environments in the 
simulation include the Seattle and the Washington D.C. areas. PSTAP results using the 
weights constructed in both ways are compared to STAP results. The comparison indicates 
that  

• PSTAP performs the same as or slightly better than the STAP for all cases studied if 
optimum weights are constructed based on the clutter models. 

• PSTAP performs the same as the STAP for all cases studied if the weights are 
constructed using other datasets.  
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